
A more technical introduction to the “fake news algorithm” for
sequence-space Jacobians
In class, I worked through the “fake news algorithm” for efficiently computing sequence-space Jacobians,
emphasizing intuition (with “insights” 1–3) and practical implementation in code rather than technical
derivations.

Here, I show how we can obtain the algorithm in a more technical way, which may be a useful
complement to the intuition and code in class. This material closely follows the derivation in section 3.2
of the paper “Using the Sequence-Space Jacobian to Solve and Estimate Heterogeneous-Agent Models”
(Auclert Bardoczy Rognlie Straub, Econometrica 2021), which you can also consult as a reference, but
here I try to focus on the main thread of the derivation and add a bit of class-relevant context.

To be clear, reading this note is not necessary for the class. I described the full algorithm because we
need it to calculate Jacobians, and I didn’t want that to be a total black box. The concept of the fake
news matrix will also be relevant later when we deviate from full information and rational expectations,
and you might be able to use some of the insights from this algorithm (especially “insight 1”) on your
own even if you don’t use the full algorithm. But compared to the other material we’ve covered in class,
precisely understanding the full algorithm is not essential for the class. This note is mainly intended for
the subset of you (maybe 10–20%) who have expressed interest in understanding the algorithm in more
detail.

Initial setup. Suppose that there is some outcome of interest—say, the consumption or asset policy—
that we are interested in. At time t, we denote by yt the vector giving this outcome across all idiosyn-
cratic states. I’ll assume for now that this is some kind of standard, forward-looking policy function.

Further, we’ll suppose that there is a potentially time-varying transition matrix Λt across states. We
multiply by the transpose of this matrix to update the distribution of agents across states: Dt+1 = Λ′

tDt.
Finally, suppose that we’re interested in the aggregate value of the outcome across the distribution

at each t. To get that, we need to take the dot product of yt and Dt, which (since these are column
vectors) we denote by Yt ≡ y′

tDt.

Mapping to what we’ve done. In the code, we compute the asset and consumption policy
functions a′(e, a) and c(e, a) over some discrete grid of states (e, a). Usually we keep these as two-
dimensional arrays, but above I’m assuming that they’ve been flattened to be (nena) × 1 dimensional
column vectors yt.

Similarly, we compute the approximate distribution D(e, a) over the same discrete grid. Again,
above, I’m assuming that we rewrite this as a (nena)× 1 dimensional vector Dt. Then, aggregating the
asset or consumption policy on the distribution, which we normally do by taking element-by-element
dot products of the two-dimensional arrays, now amounts to just taking the ordinary vector dot product
of yt and Dt.

The transition matrix between states, Λt, is in principle an (nena) × (nena) matrix giving the
transition probability between any two idiosyncratic states.1 This matrix reflects both the exogenous
probability of moving between states e and the endogenous probability of moving between states a (which
we model as a lottery between neighboring gridpoints). This is not a matrix that we ever actually form,
since it would be impractically large. But conceptually it exists, and when we iterate forward on the
distribution from Dt to Dt+1, effectively we’re performing (in a more efficient way that never involves
actually forming the matrix!) Dt+1 = Λ′

tDt.

Results with this setup. Now imagine that there is some shock dx to an input that matters for the
household (e.g. the real interest rate) at date s, and that at every other date, all inputs to the household
problem are unchanged. We denote the resulting paths of yt, Dt, and Yt with s superscripts: e.g. Y s

t

is the aggregate Yt when the household is hit with dx at date s.
1Note that this is not just the ne × ne matrix giving the transition probability between exogenous states, which we

called Π. It’s much bigger!

1



What we want to find is the Jacobian matrix

Jt,s ≡
dY s

t

dx

How do we obtain this? Totally differentiating Yt = y′
tDt around the steady state, the product rule

implies:
dY s

t = dys′
t Dss + y′

ssdD
s
t (1)

This says that the aggregate change in Yt, to first order, is the individual-level policy shock dys′
t aggre-

gated across the steady-state distribution Dss, plus the steady-state policy y′
ss aggregated across the

perturbation to the distribution.2
Our insight 1 is that ys

t only depends on s− t: the policy function at the individual level at t only
depends on the time s − t until the shock at s. (It is zero if s < t, since your policy doesn’t change in
response to past shocks.) This can be proven directly using the Bellman equation, although we won’t do
it here. Similarly, Λs

t only depends on s− t; since, for instance, in our example the transition probability
between states just depends on the asset policy, which is forward-looking and depends only on s− t.

This insight makes it easy to calculate all the ys
t and Λs

t that we need in practice. We just start
with s = T − 1 for some large T and iterate backward to obtain yT−1

t and ΛT−1
t for all 0 ≤ t ≤ T − 1.

For arbitrary s, we then use ys
t = yT−1

T−1−(s−t) (for s ≥ t; 0 for s < t) and similar for Λs
t .

This gives us the first term of (1), but what about the dDs
t? Let’s first totally differentiate Dt =

Λ′
t−1Dt−1 to obtain

dDs
t = dΛs′

t−1Dss + Λ′
ssdD

s
t−1 (2)

We can recursively substitute (2) into itself once to obtain

dDs
t = dΛs′

t−1Dss + Λ′
ssdΛ

s′
t−2Dss + (Λ′

ss)
2dDs

t−2

and, continuing the process, obtain3

dDs
t = dΛs′

t−1Dss + Λ′
ssdΛ

s′
t−2Dss + . . .+ (Λ′

ss)
t−1dΛs′

0 Dss (3)

This may look formidable, but it’s fairly intuitive: it expresses the perturbation to the distribution at
date t as the sum of perturbations to the transition matrix at prior dates, which (given our assumption
that the initial distribution at 0 is fixed and unaffected by the shock) are the ultimate causes of the
distribution being different today. For instance, in (3) the term dΛs′

t−1Dss represents the transition
matrix between t − 1 and t changing, then the term Λ′

ssdΛ
s′
t−2Dss represents the transition matrix

between t − 2 and t − 1 changing (which causes a perturbation dΛs′
t−2Dss to the distribution at t − 1,

which we iterate forward to t using Λ′
ss), and so on.

For t, s > 0, we can condense the messiness of (3) to something much nicer by writing

dDs
t =

(
dΛs′

t−1Dss + Λ′
ssdΛ

s′
t−2Dss + . . .+ (Λ′

ss)
t−2dΛs′

1 Dss

)
+ (Λ′

ss)
t−1dΛs′

0 Dss

=
(
dΛs−1′

t−2 Dss + Λ′
ssdΛ

s−1′
t−3 Dss + . . .+ (Λ′

ss)
t−2dΛs−1′

0 Dss

)
+ (Λ′

ss)
t−1dΛs′

0 Dss

= dDs−1
t−1 + (Λ′

ss)
t−1dΛs′

0 Dss (4)

Here, in the first line, we use insight 1 to replace dΛs′
t−1 with dΛs−1′

t−2 , Λ′
ssdΛ

s′
t−2 with Λ′

ssdΛ
s−1′
t−3 , and so

on, for all terms except the last. We then realize that the grouping in parentheses (all terms except the
last) is just dDs−1

t−1 , according to (3).
What is the meaning of (4)? It says that the perturbation to the distribution at date t, in response

to a shock at date s, is almost the same as the perturbation at date t− 1 in response to a shock at date
s − 1. The only difference is the term (Λ′

ss)
t−1dΛs′

0 Dss, reflecting the fact that in the former case, at
date 0 we anticipated the shock s periods ahead of time (an “extra period of anticipation”). This led to
a perturbation dDs

1 = dΛs′
0 Dss, which at date t has the persistent effect (Λ′

ss)
t−1dΛs′

0 Dss.
2Terms like dys′

t dDs
t only show up when we are doing a second- or higher-order approximation.

3Note, annoyingly, that superscripts have two different meanings here: e.g. dΛs
t−1 is the change in the transition matrix

at date t − 1 caused by the shock at date s, while (Λ′
ss)

t−1 is the transpose of the steady-state transition matrix to the
t− 1 power.

2



If we multiply both sides of (4) by y′
ss and then add dys′

t Dss = dys−1′
t−1 Dss to both sides, we get

dys′
t Dss + y′

ssdD
s
t︸ ︷︷ ︸

=dY s
t

= dys−1′
t−1 Dss + y′

ssdD
s−1
t−1︸ ︷︷ ︸

=dY s−1
t−1

+y′
ss(Λ

′
ss)

t−1 dΛs′
0 Dss︸ ︷︷ ︸

=dDs
1

(5)

where equality to dY s
t and dY s−1

t−1 follows from (1). If we define the “fake news matrix” for t, s > 0 by
Ft,s ≡ Jt,s − Jt−1,s−1, then the above says that, for t, s > 0,

Ft,sdx = dY s
t − dY s−1

t−1 = y′
ss(Λ

′
ss)

t−1dDs
1 (6)

This is our insight 2. It says that the difference between the aggregate response at date t to a date-
s shock and the aggregate response at date t − 1 to a date-s − 1 shock is given by a single term,
y′
ss(Λ

′
ss)

t−1dDs
1. We can interpret this term as the effect of anticipating, at date 0, that there will be

a shock at date s. This anticipation causes a change of dDs
1 = dΛs′

0 Dss in the distribution at date
1, and this makes a contribution to the distribution at date t of (Λ′

ss)
t−1dD1, which changes Yt by

y′
ss(Λ

′
ss)

t−1dDs
1, the term on the right in (6).

We sometimes think of this anticipation effect as the impulse response to a “fake news shock”: a
shock where at date 0, the change at date s is announced, and then at date 1 the change is retracted.

On its own, (6) is nice but not that useful, because it still seems costly to evaluate. For each s, it
looks like we need to calculate dDs

1 = dΛs′
0 Dss and then iterate forward on the distribution, for each t,

to get all the (Λ′
ss)

t−1dDs
1.

But with a slight change in perspective, we can do much better. That’s because the first two factors
in (6), y′

ss(Λ
′
ss)

t−1, don’t depend on the date of the shock s. This means we can calculate them once
and reuse them for all s!

We’ll define the tth expectation function to be4

Et ≡ Λt
ssyss (7)

The expectation function Et gives, for every state today, the expected value of y in t periods, assuming
that we follow the steady-state policy (embedded in steady-state Λss). For instance, if y is consumption,
then Et will be, for each person today, how much on average they’ll consume in t periods. This reflects
the general point that multiplying by a Markov matrix takes expectations (whereas multiplying by the
Markov matrix’s transpose iterates forward on a distribution). Given this definition, (6) reduces to just

Ft,sdx = E ′
t−1dD

s
1 (8)

The beauty of (7) and (8) is that the Et can be calculated recursively using Et = ΛssEt−1. This is
our insight 3. Like with the distribution, we don’t explicitly form Λss, which is far too large at
(nena)× (nena), but instead we write code that directly applies Λss to a vector, taking advantage of its
special structure. This code is very similar to our code for updating the distribution, which applies Λ′

ss.

Putting it all together to obtain an algorithm. Originally, we defined the fake news matrix Ft,s

for t, s > 0 as Ft,s ≡ Jt,s − Jt−1,s−1, and we eventually found that it could be evaluated by (8).
When t or s is 0, we’ll adopt the convention that Ft,s = Jt,s. For t > 0 and s = 0, we can calculate

this with the same formula (8); this is the effect at later dates t, persisting through the distribution, of
a shock that actually happens at date 0. For t = 0, we write F0,s = J0,s = (dys

0)
′Dss/dx; this is the

anticipatory effect at 0 of a shock that is expected to happen at s.
Note that if we write Jt,s = Ft,s +Jt−1,s−1 for t, s > 0 with the base case Jt,s = Ft,s when t or s is

0, we can recursively calculate J from F .
Combining all our results thus far, we have an effective algorithm (the “fake news algorithm”) to

obtain the Jacobian Jt,s:
4This is called an “expectation vector” in the sequence-space Jacobian paper, but I think “expectation function” is more

evocative, and is parallel with the idea of a “policy function” over the state space.

3



1. First, given some small shock dx at T − 1, we iterate backward to find Ys ≡ (dyT−1
T−1−s)Dss/dx

and Ds ≡ (dΛT−1
T−1−s)

′Dss/dx for each s. Ys and Ds give the response of aggregate output at date
0 and the distribution at date 1 to a shock at date s, respectively.

2. Second, starting with E0 ≡ yss, repeatedly take expectations using Et = ΛssEt−1 to obtain the
expectation functions Et = Λt

ssyss for all t = 0, . . . , T − 2.

3. Construct the fake news matrix F . For row t = 0, write F0,s = Ys. For rows t ≥ 1, calculate
Ft,s = E ′

t−1Ds.

4. Construct the Jacobian J , writing Jt,s = Ft,s whenever t or s is 0, and calculating all other entries
with the recursion Jt,s = Jt−1,s−1 + Ft,s.

Why is this so fast? A direct or “brute-force” approach to calculating Jt,s would separately calculate
each column s by finding the impulse response to a small shock dx at date s. Naively, for each s this
would involve iterating backward and forward T times to calculate the policy and then the distribution.
Since we need to do this for T values of s, the total cost would be T 2 backward and forward iterations.

With insight 1, we see how we can avoid reduce this to only T backward iterations total, but it
still seems as if the process might require T 2 forward iterations on the distribution. Insights 2 and
3, however, show that we only need to do around T “expectation” iterations5 to get the expectation
function, which we perform in step 2, and that this circumvents the need for forward iterations.

The combined effect of these insights is that in the first two steps of the algorithm, we do work that
is proportional to T rather than T 2. Since these steps require working with the full heterogeneous-agent
state space, this is a very important improvement in efficiency, especially when T is large.

In step 3, we have to form approximately T 2 dot products Ft,s = E ′
t−1Ds, so we’re still doing T 2

work somewhere here. But dot products are extremely efficiently implemented on a computer, so this
is very cheap compared to almost anything else we do with a heterogeneous-agent model. Indeed, if we
stack the Et and Ds in matrices, then we can calculate all the dot products at once in a single matrix
multiplication, which is very, very fast—so this step is almost never a bottleneck at all.

This is even more true for step 4, where we also have to do roughly T 2 calculations to fill out the
matrix—but these are trivial scalar additions Jt,s = Jt−1,s−1 + Ft,s, and very cheap.

So, if we wanted to sum up why this algorithm is so much more efficient, we’d say this: in a
brute-force approach, we need to do approximately T 2 each of hard steps, the backward and forward
iterations of the heterogeneous-agent model. Now we need to do only do approximately T each of the
same hard steps (replacing forward iterations by the very similar expectation iterations), a factor-of-T
improvement! There’s still T 2 work being done in the final two steps, but this is very easy work that
can be implemented on a computer.

5To be precise, as we can see in step 2, we actually do T − 2 expectation iterations

4


